
1. Introduction
The Sea Surface Temperature Anomalies (SSTA) in the tropical Pacific play significant roles in affecting the 
global climate (Castro et al., 2001; Fereday et al., 2008; Marzban & Schaefer, 2001; McKinnon et al., 2016; H. 
Wang & Ting, 2000). For instance, the interannual variability of SSTA in the tropical Pacific, namely, the El 
Niño/Southern Oscillation (ENSO) phenomenon, not only strongly affects the climate (e.g., temperature, wind 
speed, precipitation, etc.) in East Asia (Gao et al., 2006; Wu et al., 2003; Yuan & Yang, 2012), and North America 
(Q. Hu & Feng, 2012; Infanti & Kirtman, 2016; Ropelewski & Halpert, 1986), but also has a significant impact 
on the variabilities of sea ice extent and concentration in the Antarctic and Arctic regions (Clancy et al., 2021; 
Dash et al., 2013; X. Yuan, 2004). Therefore, accurate predictions of SSTA in the tropical Pacific are crucial 
for decision-making as well as mitigating the risks of extreme weather (Patt & Gwata, 2002; Pierce W., 2002; 
Solow et al., 1998; Trenberth et al., 1998). In recent years, the 6-month advance predictions of SSTA have been 
achieved in the tropical Pacific through ocean-atmosphere coupled models (Song et al., 2020; Tang et al., 2018; 
Xue et al., 2013). However, 1-year prediction in advance is still challenging due to the so-called seasonal Predict-
ability Barrier (PB) (Jin et al., 2008; Tang et al., 2018; van Oldenborgh et al., 2005; Webster, 1995; Webster & 
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Yang, 1992), which is known as a rapid loss of prediction skills in most SSTA forecast models during certain 
seasons (Torrence, 1998).

The PB of SSTA has been reported globally during various seasons. For example, it can be found in spring in 
the eastern tropical Pacific (Duan & Wei,  2013), summer in the northern Pacific Ocean and central tropical 
Pacific (Duan & Wu, 2015; Hou et al., 2019), and winter in the Indian Ocean Dipole region (Liu et al., 2018). 
Even though enormous efforts have been dedicated to investigating the features of the PB of SSTA, there is still 
a need for a better understanding of the mechanisms that cause the PB (Chong-Yin & Jian, 2009; Hu et al., 2014; 
McPhaden, 2003). Some researchers connected the PB phenomenon with some traditional statistical characteris-
tics of observed SSTA (Ren et al., 2016; Webster & Yang., 1992). For example, Xue et al. (1994) indicated that 
the variance, signal-to-noise ratio, and auto correlation of monthly SSTA data in the eastern tropical Pacific are 
lowest in spring, and attributed the spring PB of SSTA in models to these statistic characteristics of the SSTA. 
However, Jin et al. (2022) suggested that the low persistence of SSTA does not always imply the low predictabil-
ity of SSTA in the models, which makes the connection between these traditional statistic characteristics of SSTA 
data and the PB of SSTA unclear. Some researchers suggested that the PB of SSTA was triggered by the stochastic 
noise in the ocean and atmosphere (Lopez & Kirtman, 2014; Mukhin et al., 2021). Torrence and Webster (1998) 
indicated that the signal-to-noise ratio of the SSTA in the eastern tropical Pacific is lowest in spring and the air-sea 
coupled system is more susceptible to perturbation from the outside of the tropical dynamic system. Levine and 
McPhaden (2015) found that the spring PB of SSTA was more realistic compared with the observed PB in other 
complex models when the noise forcing is included in a conceptual recharge oscillator model. Others found that 
the initial errors of SSTA in the dynamic models grew rapidly in certain seasons without stochastic noises, and 
eventually led to the PB of SSTA (Hou et al., 2019; Larson & Kirtman, 2015; Lau & Yang, 1996; Moore, 1999). 
For instance, using the Zebiak-Cane dynamic model, Samelson and Tziperman (2001) revealed that the initial 
errors increased significantly in the growth phase of El Niño, and eventually led to the PB of SSTA in the tropical 
Pacific. Zheng and Zhu (2010) found that the largest initial errors occur in the spring and can strongly affect the 
prediction skill of SSTA in an ENSO dynamic prediction model. Hou et al. (2019) demonstrated that the initial 
error has the fastest growth rate in the spring of the eastern Pacific ENSO and the summer of the central Pacific 
ENSO based on multiple CMIP5 experiments.

There are two potential causes for the error growth of models in certain seasons (Webster, 1995; Webster & 
Yang, 1992). One is the missing of some key physical processes from the real world in the models (Collins 
et al., 2002), which means that the PB can be overcome by having a better knowledge of the air-sea coupled 
processes. The other is the chaotic nature of the system (Lorenz, 1963), which means that the small initial errors 
will grow exponentially in the models. The latter suggests that the PB is an inherent phenomenon regardless of 
more observations or a more accurate initial field for the models, as the exact initial information of ocean and 
atmosphere cannot be gained. Although the chaotic nature of the coupled system has been identified as a possible 
cause for the PB of SSTA in the tropical Pacific (Samelson & Tziperman, 2001), their results are based on the 
numerical model and cannot eliminate the effect of the deficiencies in the model. Previous studies have suggested 
that SSTA variability in the tropical Pacific fundamentally results from the nonlinearity of the coupled air-sea 
coupled system (Hua et al., 2019; Liang et al., 2012, 2017; Sun, 1997), but they did not further study the nonlinear 
cause for the PB of SSTA. Hence, the inherent chaotic characteristic in the coupled system as a cause for the PB 
phenomenon remains to be established, which is important because this nonlinear cause is closely related to the 
inherent prediction capability of the air-sea coupled system.

Recent progresses in time series analysis of the nonlinear systems have raised the possibility to deal with chaotic 
nature by extracting nonlinear dynamical information of studied systems only through analyzing observed time 
series (Bradley & Kantz, 2015; Fraedrich, 1987; Kantz & Schreiber, 2003; Karamperidou et  al.,  2014; Li & 
Ding,  2013). Representatives of the chaotic degree are the correlation dimension (Thelier,  1987), Lyapunov 
Exponents (Wolf et al., 1985), Kolmogorov Sinai Entropy (Latora & Baranger, 1999), and so on. However, the 
statistical methods to extract these representatives from the observed time series are applicable to infinite noise-
less time series from the well-defined theoretical dynamic system, but will generate serious biases when dealing 
with noisy and limited-time series observed from the nonlinear systems in nature (Pincus, 1991, 1995), such as 
the ocean and atmosphere. Based on the information theory, a Sample Entropy (SamEn) method was proposed to 
quantify the chaotic degree of short and noisy time series from a nonlinear system (Richman & Moorman, 2000). 
When comparing the SamEn values between two different nonlinear systems, a system is more chaotic when 
its SamEn value is higher, and vice versa. The SamEn method is robust with noises and does not change easily 
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when utilizing different parameters in the calculation process (Yentes et al., 2013). The applicability of SamEn 
to quantify the chaotic degree and complexity of a nonlinear system has been well examined in broad disciplines 
including physiological time-series analysis (Eduardo Virgilio Silva & Otavio Murta, 2012; Lake et al., 2002; 
Richman & Moorman, 2000), de-noising for hydrologic signals (Wang et al., 2014; Zhang et al., 2019), turbulent 
experimental data analysis (Kim, 2021), and even the stock markets study (Shi & Shang, 2013). In this study, 
the SamEn method was implied to investigate the spatial-temporal distributions and variations of chaotic degrees 
within the air-sea coupled nonlinear system in the tropical Pacific and the connections of SamEn values with the 
seasonal PB of SSTA.

2. Data and Method
2.1. Data

Observed daily SSTA data from 1982 to 2021 are obtained from the NOAA Optimum Interpolation Sea Surface 
Temperature (OISST) V2 High-Resolution Data Set (https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.high-
res.html). The OISST data set incorporates observations from different platforms (satellites, ships, buoys, and 
Argo floats) into a regular global grid, and has been widely used in climate assessments and monitoring (Huang 
et  al.,  2021). The longitude and latitude resolution of the data set is 0.25° between 0.125°E−359.875°E and 
89.875°S−89.875°S. The data set contains the data from September 1981 to the present. In this study, the trop-
ical Pacific is defined between 10°S and 10°N in latitude and 155°E and 90°W in longitude. The time range of 
observed SSTA data is from 1982 to 2021. To reduce the computational cost, the horizontal grids of OISST are 
interpolated to the same 2° longitude and 2° latitude grids. The finer grid than the 2° longitude and 2° latitude will 
not affect our results. The longitude and latitude resolution of the climatology data are 2° between 155°E−90°W 
and 10°S−10°N. The daily SST anomaly data are computed by removing the climatological mean daily cycle and 
trend from the data at each grid point. The OISST data are mainly used in Section 3.1 and Section 3.2.

The monthly ocean temperature data with the vertical profile are obtained from the HYCOM Global Ocean 
Forecasting System (GOFS) 3.1 reanalysis data sets (https://www.hycom.org/dataserver/gofs-3pt1/reanalysis), 
which have been validated against observations with consistent outcomes reported (Chassignet et al., 2007). The 
longitude resolution of the data set is 0.08° between 0°E and 360°E. The latitude resolution is 0.08° between 
40°S−40°N and 0.04° between 40°N−90°N and 90°S−40°S. The number of vertical levels is 40. In the upper 
12 m, there are seven layers, and the vertical interval is about 2 m. Between 15−50, 50–100, and 150–400 m, 
there are 8, 6, and 6 layers with the vertical interval of 5, 10, and 50 m, respectively. The thermocline depth is 
defined as the depth of 20°C isotherms in the ocean subsurface based on the HYCOM data set. The data set 
contains the data between 1994 and 2015, which is the maximum time range of this HYCOM GOFS 3.1 data 
set. The monthly net surface heat flux data are from the National Centers for Environmental Prediction (NCEP) 
Climate Forecast System Reanalysis (CFSR) and Climate Forecast System Version 2 (CFSv2) data, which are the 
surface forcing of HYCOM GOFS 3.1 reanalysis data sets. The CFSR and CFSv2 are available in the National 
Center for Atmospheric Research (NCAR) research data archive (https://rda.ucar.edu/). The longitude resolution 
of CFSR and CFSv2 data sets is 1° between 0°E and 359°E. The latitude resolution is 1° between 90°S and 90°N. 
The CFSR and CFSv2 data sets contain the data between 1979 and 2021. The horizontal grids of HYCOM, 
CFSR, and CFSv2 data sets are interpolated to the same 2° longitude and 2° latitude grids compared with the 
OISST data set. The monthly anomaly data are computed by removing the climatology data from the original 
data. The HYCOM, CFSR, and CFSv2 reanalysis data sets are mainly used in Section 3.4.

The SSTA forecast data in dynamic models are from the North American Multi-Model Ensemble (NMME) data 
set (http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/), which is the state-of-the-art coupled ensemble 
model to predict the SSTA variation in the tropical Pacific. It provides monthly forecast data with a maximum 
range between 1980 and 2021 (Kirtman et al., 2014). The NMME data set has been continuously evaluated and 
shows good performance of region climate predictability (Barnston et al., 2019; Becker et al., 2020). The NMME 
model set contains 29 different models, but only seven of them cover our study period, which is between 1982 and 
2021. Therefore, in this study, the forecast data from these seven different dynamic models in the NMME model 
set were chosen to calculate the forecast error of SSTA in the tropical Pacific. The details of these seven different 
dynamic models can be found in Table 1. The SSTA forecast data are interpolated into the same 2° longitude and 
2° latitude grids as the OISST observed data. Forecast errors are defined as the difference between the forecast 
SSTA value and the observed OISST SSTA value. The NMME forecast data set is mainly used in Section 3.3.
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2.2. Calculation Process of the SamEn Method

The SamEn method quantifies the self-similarity degree of a time series by examining the number of instances, 
that two subsequences in the time series are still similar when the length of subsequences increases. More details 
can be found in Delgado-Bonal and Marshak (2019).

For arbitrary time-series data 𝐴𝐴 𝐴𝐴 = {𝐴𝐴1,𝐴𝐴2,𝐴𝐴3 . . .𝐴𝐴𝑛𝑛} of length 𝐴𝐴 𝐴𝐴 , the time series can be reconstructed to a 
matrix of sequence vectors:

Ψ� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�1 �2 . . . ��

�2 �3 . . . ��+1

. . . . . . . . . . . .

��−� ��−�+1 . . . ��−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

 (1)

which contains 𝐴𝐴 𝐴𝐴 columns and 𝐴𝐴 𝐴𝐴 − 𝑚𝑚 rows. 𝐴𝐴 𝐴𝐴 is the embedding dimension number (Richman & Moorman, 2000), 
which is the minimum time scale in this study. The length of the time series 𝐴𝐴 𝐴𝐴 should be larger than 200 to make 
the SamEn values stable (Aktaruzzaman & Sassi, 2014; Mayer et al., 2014).

The sequence vector 𝐴𝐴 Ψ
𝑚𝑚

𝑖𝑖
 is defined as a row in 𝐴𝐴 Ψ

𝑚𝑚 , which can be written as follows:

Ψ
𝑚𝑚

𝑖𝑖
= {𝐻𝐻𝑖𝑖,𝐻𝐻𝑖𝑖+1. . .𝐻𝐻𝑖𝑖+𝑚𝑚−1} 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁 − 𝑚𝑚 (2)

The distance between two sequence vectors is defined as the Chebychev distance (Kløve, 2011), which is the 
absolute value of the elements between these two sequence vectors:

Dis
[

Ψ�
� ,Ψ

�
�

]

= max�=1,2,. . .�|��+� −��+�| 

1 ≤ 𝑖𝑖𝑖 𝑖𝑖 ≤ 𝑁𝑁 − 𝑚𝑚𝑖 𝑖𝑖 ≠ 𝑖𝑖 (3)

The results would not be strongly affected by utilizing other distance types to calculate the SamEn values, such 

as Euclidean distance (Dis
[

Ψ�
� ,Ψ

�
�

]

=
√

(��+1 −��+1)2 + (��+2 −��+2)2 + . . . + (��+� −��+�)2 ), Manhattan 
distance (Dis

[

Ψ�
� ,Ψ

�
�

]

=
∑�

�=1 |��+� −��+�| ) (the results are not shown), as these distance types can all measure 
the similarity between different time series.

To verify the similarity of two sequence vectors, the recommended criterion is based on the standard deviation of 
the original time series (Delgado-Bonal & Marshak, 2019; Richman & Moorman, 2000):

��
�,� =

⎧

⎪

⎨

⎪

⎩

1 whenDis
[

Ψ�
� ,Ψ

�
�

]

≤ � × std(�)

0 whenDis
[

Ψ�
� ,Ψ

�
�

]

> � × std(�)or� = �
1 ≤ �, � ≤ � − � (4)

Model name No. ensemble members Hindcast period Reference

CanCM4i 10 1981–2021 Lin et al. (2020)

CanSIPSv2 20 1981–2021 Lin et al. (2020)

COLA-RSMAS-CCSM4 10 1982–2021 Kirtman & Min (2009)

GFDL-CM2p5-FLOR-A06 12 1980–2021 Kirtman et al. (2014)

GFDL-CM2p5-FLOR-B01 12 1980–2021 Kirtman et al. (2014)

GFDL-CM2p1-aer04 10 1982–2021 Kirtman et al. (2014)

GEM-NEMO 10 1981–2021 Lin et al. (2020)

Table 1 
The NMME Model Set Used in This Study
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where 𝐴𝐴 𝐴𝐴 × 𝑠𝑠𝑠𝑠𝑠𝑠(𝐻𝐻) is a tolerance to determine whether two sequence vectors 
are similar. Then the numbers of similar vectors in the matrix of sequence 
vectors are calculated by:

�� = 1
2
∑�−�

�=1

∑�−�

�=1
��

�,�1 ≤ �, � ≤ � − � (5)

Next, 𝐴𝐴 Ψ
𝑚𝑚+1 is defined as another matrix of sequence vectors of 𝐴𝐴 𝐴𝐴 :

Ψ�+1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�1 �2 . . . ��+1

�2 �3 . . . ��+2

. . . . . . . . . . . .

��−� ��−�+1 . . . ��

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

 (6)

whose number of columns is 𝐴𝐴 𝐴𝐴 + 1 and row is 𝐴𝐴 𝐴𝐴 − 𝑚𝑚 . The sequence vector of 
𝐴𝐴 Ψ

𝑚𝑚+1 is defined as one row in 𝐴𝐴 Ψ
𝑚𝑚+1 . Similarly, 𝐴𝐴 𝐴𝐴𝑚𝑚+1 can be calculated by 𝐴𝐴 Ψ

𝑚𝑚+1 .

Finally, SamEn is defined as the proportion of similar numbers between 
subsequence matrixes 𝐴𝐴 Ψ𝑚𝑚 and 𝐴𝐴 Ψ𝑚𝑚+1 :

SamEn(𝑚𝑚𝑚 𝑚𝑚) = −𝑙𝑙𝑙𝑙

(

𝐵𝐵𝑚𝑚+1

𝐵𝐵𝑚𝑚

)

 (7)

For three-dimensional geophysical variables, such as SSTA 𝐴𝐴 (𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) (𝐴𝐴 𝐴𝐴 
represents the longitude, 𝐴𝐴 𝐴𝐴 represents the latitude, and 𝐴𝐴 𝐴𝐴 represents the 

days), the SamEn of the time series can be calculated in one single grid point, and get the spatial pattern of 
the SamEn of SSTA.

3. Results and Discussion
3.1. Parameter Determination for SamEn

SamEn is the relative estimation of the sum of positive Lyapunov Exponents (Fraedrich, 1987; Pincus, 1991, 1995; 
Richman & Moorman, 2000), which can be taken as the degree of the chaos of dynamic systems (Wolff, 1992). 
The values of SamEn will change with different combinations of parameters for the embedding dimension 𝐴𝐴 𝐴𝐴 
and the similarity tolerance 𝐴𝐴 𝐴𝐴 . To determine the parameter combinations of 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 in this study, in Figure 1, the 
meridional means SamEn values of daily SSTA in the entire tropical Pacific between 1982 and 2021 are inves-
tigated using different parameter values to validate the effect of parameters 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 in the calculation of SamEn. 
The typical values of 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 are between 𝐴𝐴 [2, 4] and 𝐴𝐴 [0.2, 0.4] , respectively, similar to those of the previous studies 
(Ramdani et al., 2009; Yin et al., 2020; Zhao et al., 2015). The value of 𝐴𝐴 𝐴𝐴 represents the length of sequent vectors 
of daily SSTA. The change of 𝐴𝐴 𝐴𝐴 does not significantly affect the values of SamEn. The absolute values of SamEn 
decrease as 𝐴𝐴 𝐴𝐴 increases, while the relative patterns of the SamEn values remain the same. Since only the relative 
values of SamEn matter, the different combinations of parameters for 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 do not affect our conclusions. 
Therefore, the SamEn values in this investigation were calculated using 𝐴𝐴 𝐴𝐴 = 2 and 𝐴𝐴 𝐴𝐴 = 0.3 .

3.2. Spatial-Temporal Variation of SamEn

Monthly SamEn values in Niño 3 (5°N–5°S, 150°W–90°W), Niño3.4 (5°N–5°S, 170°E−120°W), and Niño 4 
(5°N–5°S, 160°E−150°W) regions are shown in Figure 2. The monthly SamEn values were calculated based 
on daily SSTA in separate months. For example, when the SamEn value was calculated in January, all the daily 
data in January between 1982 and 2021 will be used (1,240 data in total). Distinct annual cycles can be observed 
in all three regions. The SamEn value in the Niño 3 region starts to increase in January, peaks in April with 
a maximum value of 0.73 and decreases thereafter. The average value equals 0.55. The temporal variation of 

Figure 1. The meridional mean of Sample Entropy value of observed Sea 
Surface Temperature Anomaly in the tropical Pacific between 10°S and 10°N 
in the latitude and 155°E and 90°W in the longitude using different parameters 
(𝐴𝐴 𝐴𝐴 = [2, 3, 4] ; 𝐴𝐴 𝐴𝐴 = [0.2, 0.3, 0.4] ). The temporal range was from 1982 to 2021. 
The value of 𝐴𝐴 𝐴𝐴 is in days.
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SamEn in the Niño 3.4 region is comparable to that in Niño 3 with a slightly 
higher average value of 0.6. The SamEn value in the Niño 4 region starts 
to increase in February, peaks in June with a maximum value of 0.88 and 
declines afterward. The average SamEn value in the Niño 4 region reaches 
0.75 and is significantly higher than that in other regions, indicating the low 
predictability of SSTA in the Niño 4 region (Tang et al., 2018). Considering 
the abovementioned definition of SamEn, the highest degree of chaos exists 
in spring in the Niño 3 and 3.4 regions and early summer in the Niño 4 
region, which are consistent with the known spring PB of SSTA In the Niño 
3 and 3.4 regions (Duan & Wei, 2013), and the early summer PB in the Niño 
4 region (Hou et  al.,  2019). Some studies indicated that the Predictability 
Barrier in Niño 4 region is weak than that in Niño 3 region (Hou et al., 2019; 
Qi et al., 2021), which is controversial to what was observed in this work. 
This controversial finding may result from the model deficiencies for simu-
lating the SSTA in Niño 4 region (Lee et al., 2018; Liu et al., 2022; Zheng 
& Yu., 2017).

Despite the fact that the temporal variation of the PB in the tropical Pacific has 
been extensively investigated in recent decades (Duan & Wei, 2013; Duan & 
Wu, 2015), the spatial pattern of PB is less well known (Yu & Kao, 2007). To 
discuss the chaotic characteristics in the entire tropical Pacific and its connec-
tion with PB, the monthly spatial patterns of the SamEn values are shown in 
Figure 3. It is shown that the SamEn patterns have clear monthly variation 
over the entire tropical Pacific. In summer, autumn, and winter, the highest 
SamEn values exist in the western, northwestern, and southwestern tropical 
Pacific, where the Intertropical Convergence Zone (ITCZ) stripe region and 
South Pacific Convergence Zone (SPCZ) are defined (Vincent, 1994; Waliser 
& Gautier,  1993). The complex physical process that includes deep cloud 
convection, maximum precipitation, and huge atmosphere energy transport 
in the ITCZ and SPCZ region may lead to the high chaotic characteristic 

of SSTA in this region (Brown et al., 2020; Schneider et al., 2014). In the central and eastern tropical Pacific 
between 5°S and 5°N, where ENSO events occur, the SamEn values are significantly lower than in other regions 

Figure 2. (a) The distributions of Niño 3 region (blue box with solid line), 
Niño 3.4 region (red box with sparse dash line), and Niño 4 region (green box 
with dense dash line) in the tropical Pacific. (b) The monthly Sample Entropy 
values of observed Sea Surface Temperature Anomaly in the Niño 3 region 
(blue solid line), Niño 3.4 region (red sparse dash line), and Niño 4 region 
(green dense dash line). Error bars represent the 95% confidence interval.

Figure 3. The spatial patterns of Sample Entropy of observed Sea Surface Temperature Anomaly in different months.
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in summer, autumn, and winter. The ENSO phenomenon is the most predict-
able interannual signal in the world (Chen & Cane, 2008; Tang et al., 2018), 
leading to the low chaotic characteristic of SSTA in these regions. However, 
in February, March, April, and May, the low SamEn pattern in the eastern 
tropical Pacific no longer exists. From February, the SamEn values in the 
eastern tropical Pacific gradually increase, reaching a maximum in April and 
finally decreasing to the initial state in June. In the central tropical Pacific, 
the SamEn value reaches its maximum in May, with a lag of 1 to 2 months 
compared to the variation in the eastern tropical Pacific. The high SamEn 
patterns appear to originate from the eastern tropical Pacific and propagate 
westward to increase the SamEn values in the central tropical Pacific.

In Figure 4, the chaotic characteristic of SSTA is investigated as a function 
of spatial coordinates (i.e., longitude) in the tropical Pacific region using 
the SamEn method. Figure 4a shows the spatial pattern of the months when 
the SamEn values peak. The peak months in the eastern tropical Pacific are 
primarily between March and May; in the central tropical Pacific, it is mainly 
in May and June; and in the western tropical Pacific, the peak month is after 
July and exhibits significant spatial variations. The contour plot of the SSTA 
SamEn values averaged between 5°S and 5°N as a function of longitude 
coordinates is shown in Figure 4b. From 180°E to 100°W, there is a linear 
trend of high SamEn values along the longitude may be observed. The month 
when the SamEn values peak moves from March to June as the coordinates 
moving westward. Compared with Figure 3, the result further reveals that the 
chaotic signal might originate in the eastern tropical Pacific during spring, 
and spread westward linearly to the central tropical Pacific.

To further explore the spatial-temporal features of the SSTA chaotic degree, the variances of monthly SSTA data 
are shown in Figure 5a. The variances of SSTA are low in the spring (summer) in the eastern (central) tropical 
Pacific, which displayed a similar spatial-temporal pattern as the one from SamEn in Figure 4b. The variances of 
SSTA in the tropical Pacific are closely related to the ratio between ENSO (high-amplitude) signal and background 
(low-amplitude) signal (Torrence & Webster., 1998; Xue et al., 1994). To demonstrate the relation, in Figure 5b, 
the comparison of the SSTA variances and the ratio between background SSTA signal and ENSO-related signal 
was shown in Niño 3 region. When the variances of SSTA were large between November and January, the ratios 
between low-amplitude background signal and high-amplitude ENSO-related signal were low with a minimum 
value of 0.15, which means the ENSO-related signal was more dominant than the background signal in SSTA 
during these months. On the contrary, when the variances of SSTA were low between March and May, the ratios 
between background signals and ENSO-related signals were relatively high, which represented a dominant role 
of background signals. Hence, the similarity between variations of high SamEn values and low SSTA variances 
indicated that the low-amplitude background signal was more chaotic than the ENSO-related signal.

3.3. Spatial-Temporal Variation of PB

To investigate the connection between the chaotic background SSTA signals and the PB phenomenon, the fore-
cast errors are examined in the NMME data set, which is defined as the difference between the forecast SSTA 
value in the NMME data set and the observed SSTA value in the OISST data, starting from January. In Figure 6, 
the forecast SSTA is the ensemble mean values of the NMME models listed in Table 1. The lead time when fore-
cast errors start to grow rapidly shows a linear variation along the longitude, which is near March and April in the 
eastern tropical Pacific and June and July in the central tropical Pacific. The spatial-temporal patterns of forecast 
errors for different forecast models are shown in Figure S2 in Supporting Information S1. Most of the models 
(except the GFDL-CM2p1-aer04) show similar spatial-temporal variations of forecast errors compared with the 
results of the ensemble mean in Figure 6. The evolution of forecast errors starting from other months displays 
similar results (more details can be seen in Figure S3 in Supporting Information S1). The variation of forecasting 
ability was compatible with the fluctuation of the high SamEn values in Figure 4b and low variances of SSTA 
data in Figure 5a. When the variances of SSTA data were low, the low-ampliltude chaotic background SSTA 

Figure 4. (a) Contour plot of the month when the Sample Entropy has the 
maximum value, the red number represents the peak month. (b) Contour plot 
of sample entropy value as a function of longitude and month. The data are 
averaged between 5°S and 5°N.
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signal was more dominant than the ENSO-related signal. This chaotic background SSTA signal was inherently 
difficult to predict as the initial error in the forecast models will grow rapidly, leading to the seasonal PB. Hence, 

the inherent low predictability of the chaotic background SSTA signal may 
lead to the seasonal PB of SSTA in the tropical Pacific.

3.4. Potential Causes for the Spatial-Temporal Variations of Chaotic 
Degree

To better understand the potential causes of SSTA chaotic nature, the correla-
tions between the chaotic degree of SSTA and driving forces from the atmos-
phere and ocean were investigated. In Figure 7, the correlation coefficients 
of monthly SSTA with the thermocline depth anomaly and shortwave flux 
anomaly were shown as a function of longitude and month.

In the Niño 3 region, when the chaotic degree was the greatest in the spring, 
the correlation between SSTA and the thermocline depth anomaly was the 
weakest, but the correlation with the shortwave flux anomaly was the highest 
among all seasons. Meanwhile, in the Niño 4 region, when the chaotic degree 
was the greatest in the summer, the correlation became the least between 
SSTA and shortwave flux anomaly. The correlation between SSTA and ther-
mocline depth anomaly represents the effect of subsurface thermal state on 
SSTA variability in the tropical Pacific (Zhu et al., 2015). Hence, the seasonal 
correlations of SSTA with the ocean subsurface thermal state and the atmos-
pheric forcing may contribute to the high chaotic degree of SSTA in the Niño 
3 and Niño 4 regions. Furthermore, the correlation between SSTA and short-
wave flux anomalies displayed a similar pattern as one of the SamEn values 
in Figure 4b, which indicated that the connection between the SSTA and the 
atmospheric forcing might contribute to the spatial-temporal variations of the 

Figure 5. (a) Contour plot of the variances (Var.) of monthly Sea Surface Temperature Anomaly (SSTA) data as a function of longitude and month, the data were 
averaged between 5°S and 5°N. The color bar represents the monthly variance value of the SSTA. (b) The comparison of the SSTA variances and the ratio between 
background SSTA signal and El Niño/Southern Oscillation (ENSO)-related signal for different months in the Niño 3 region. The blue line represents the SSTA 
variances in different months. The SSTA variances values are marked as diamond. The y-axis is blue and located on the left. The red line represents the ratio between 
low-amplitude background SSTA signal and high-amplitude SSTA signal for a different month. The values of the ratio are marked as a solid circle. The y axis is red 
and located on the right. The high-amplitude ENSO-related signal is defined as the average monthly SSTA in Niño 3 region whose values are greater than 0.5°C or less 
than −0.5°C. The low-amplitude background signal is defined as the average monthly SSTA whose values are greater than −0.5°C and less than 0.5°C. The detailed 
calculation process of the monthly ratio can be seen in Figure S1 in Supporting Information S1. The monthly SSTA data are from the Optimum Interpolation Sea 
Surface Temperature data set. The temporal range is from 1982 to 2021.

Figure 6. Contour plot of the forecast errors as a function of longitude and 
lead time, the data are averaged between 5°S and 5°N. The forecast error 
was calculated by the difference between the observed value in the Optimum 
Interpolation Sea Surface Temperature data set and the ensemble average of 
Sea Surface Temperature Anomaly forecast values based on seven NMME 
models listed in Table 1. The initial month was January. The lead time 
represented the time after the initial forecast.
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chaotic characteristic of SSTA. The correlations between SSTA and other variables related to SSTA variability 
(e.g., longwave radiations, latent and sensible heat fluxes, surface wind stresses, etc.) did not show consistent 
spatial-temporal variations compared with that of chaotic degree (not shown here).

4. Conclusions
In this paper, the SamEn method was utilized to identify the nonlinear cause of the seasonal PB of SSTA in 
the tropical Pacific based on the OISST, the HYCOM, CFSR, and CFSv2 reanalysis data, and the NMME 
forecast model data sets. The PB phenomenon was found to result from the inherently low predictability of 
chaotic background SSTA signal. The connection between SSTA and atmospheric forcing may contribute to the 
spatial-temporal variations of the chaotic signal.

On the monthly scale, the chaotic degree of the observed SSTA peaked in April in Niño 3 and Niño 3.4 regions, 
May, and June in Niño 4 region, which agreed with the known spring PB in Niño 3 and Niño 3.4 regions and 
summer PB in Niño 4 region. In these peak months, the air-sea coupled system is more chaotic; in other words, 
the initial errors will grow faster and finally result in the corresponding seasonal PB of SSTA in these regions.

The monthly spatial patterns of the chaotic degree and its average between 5°S and 5°N along the longitude in 
the tropical Pacific were investigated. It was revealed that the anomalous high chaotic signal originated in the 
eastern tropical Pacific in the spring, and then propagated westward to the central tropical Pacific in the summer. 
The low variance value of SSTA showed a similar westward propagation character along the longitude compared 
with the chaotic degree. When the variance of SSTA was low, the low background SSTA signal was more domi-
nant than the ENSO-related signal. Hence, the similarity between the variations of high SamEn values and low 
SSTA variances indicated that the low-amplitude background signal was more chaotic than the ENSO-related 
signal. Furthermore, the spatial-temporal variations of the PB occurrence timing were similar to that of the high 
chaotic degree and low variance value of SSTA. Specifically, when the variances of SSTA were low, the chaotic 
low-amplitude background SSTA signal was dominant, and the PB phenomenon occurred. The chaotic back-
ground SSTA signal was inherently difficult to predict as the initial error in the forecast models will grow rapidly, 
leading to the seasonal PB.

Figure 7. Contour plot of the correlation coefficients between monthly Sea Surface Temperature Anomaly (SSTA) and thermocline depth anomaly (a), and shortwave 
flux anomaly (b) as a function of longitude and month. The SSTA data and thermocline depth anomaly data are from the HYCOM reanalysis data set. The thermocline 
depth is defined as the depth of 20°C isotherms in the ocean subsurface. The shortwave flux anomaly data are from the Climate Forecast System Reanalysis and 
Climate Forecast System Version 2 reanalysis data sets. The temporal range is from 1994 to 2015, which is the maximum range of the HYCOM data set. The 
spatial-temporal variations of the chaotic degree of HYCOM SSTA were shown in Figure S4 in Supporting Information S1. The westward propagations of high chaotic 
value are still evident compared with Figure 4b.
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To explore the potential causes for the westward propagation of the SSTA chaotic degree along the longitude in 
the tropical Pacific, the seasonal correlation coefficients of SSTA with the different variables related to SSTA 
variability were shown. Only the correlation between SSTA and shortwave flux anomaly showed similar varia-
tions along the longitude compared with the chaotic degree, which indicated that the seasonal connection between 
the SSTA and the atmospheric forcing may contribute to the spatial-temporal variations of the chaotic degree of 
SSTA.

It should be noted that the PB phenomenon in the tropical Pacific can be represented by a rapid loss of predict-
ability or persistence of the ocean heat content in winter (Balmaseda et al., 1995; McPhaden, 2003; Seleznev & 
Mukhin, 2022; Yu & Kao, 2007). It is not clear whether the nonlinear cause for the PB of SSTA found in this 
study is appliable to the PB of the ocean heat content and other physical variables and further studies would be 
necessary. In addition, there are still some open questions about the physical causes for the spatial-temporal vari-
ations of the chaotic degree. For example, in the Niño 3 region, the chaotic degree was high when the atmospheric 
forcing is more correlated with SSTA in the spring; in the Niño 4 region, the chaotic degree was high when the 
atmospheric forcing is less correlated with SSTA in the summer. Hence, the atmospheric forcing seems to play 
a different role in the chaotic nature of SSTA in the Niño 3 and the Niño 4 region. Utilizing the dynamic models 
may be a better method to investigate the nonlinear characteristic of the system, as the correlation analysis is still 
based on the linear theory (Bradley & Kantz, 2015). Using a box model for the ENSO phenomenon (Sun, 1997), 
we have found that the atmospheric forcing directly determines the chaotic behavior of air-sea coupled systems in 
the tropical Pacific. However, this finding still requires a more rigorous theoretical discussion and is not described 
in this manuscript. As this work is mainly focused on exploring the nonlinear cause of the Predictability Barrier 
of SSTA, the detailed role of external forcings in the chaotic nature of SSTA is beyond the scope of this study and 
will be discussed in future work.

Data Availability Statement
The data used to reproduce the results of this paper are located at https://psl.noaa.gov/data/gridded/data.noaao-
isst.v2.highres.html for NOAA Optimum Interpolation Sea Surface Temperature (OISST) V2 High-Resolution 
Data Set, http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/ for the North American Multi-Model 
Ensemble (NMME) data set, https://www.hycom.org/dataserver/gofs-3pt1/reanalysis for the HYCOM Global 
Ocean Forecasting System (GOFS) 3.1 reanalysis data sets, and https://rda.ucar.edu/ for the National Centers for 
Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) and Climate Forecast System 
Version 2 (CFSv2) data.
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